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Received 17 February 1975 

Abstract. A tetradic scattering matrix formalism is proposed as a comprehensive framework 
for describing scattering and relaxation processes of both stationary and non-stationary 
systems. In the latter case (realized by the scattering of the molecular-maser beam) ordinary 
dyadic T-matrix formalism involving on-the-energy-shell scattering amplitudes is inadequate, 
the introduction of off-the-shell elements being required. Expressions are given relating the 
tetradic I-matrix elements to various scattering and attenuation rates (or cross sections). 
The relation to the tetradic level-shift operator in relaxation (linear response) theory is 
discussed. Photon absorption is presented as the successive occurrence of a scattering and 
a relaxation process, from the point of view of this formalism. 

1. Introduction 

In molecular physics it  is customary to distinguish between scattering and relaxation 
experiments. Although, in dilute samples, both experiments may be related to elementary 
‘collision’ processes, they differ essentially in their preparation and detection modes. 
In scattering experiments, the scattered particle (or particles) is prepared in some well 
defined state, usually a stationary state of the Hamiltonian H o  pertaining to the non- 
interacting constituents. The products of the scattering process are then analysed in 
their respective stationary states in terms of the corresponding cross sections. As a 
matter of principle, such an experiment can be performed with arbitrarily sharp energy 
resolution. Consequently, the cross sections may be formally related to the S matrix or, 
rather, to on-the-energy-shell elements of the scattering ( T )  matrix (cf Goldberger and 
Watson 1964, Levine 1969). 

In relaxation (or decay) experiments, a microscopic subsystem within a material 
sample is brought into a non-equilibrium state by some external agent (eg, radiation) 
and its decay back to  equilibrium is monitored, with the microsystem in permanent 
contact with the rest of the sample, acting as a thermal bath (cf Bloch 1946, 1956, 1957, 
Redfield 1965, Zwanzig 1960a, b, Fano 1963, Abrikosov er al 1965, Fetter and Walecka 
1971). Formally, such experiments are analysed in terms of retarded Green functions 
and level-shift operators. 

I t  is well known that the two formal descriptions, that of scattering by the T matrix 
and that of relaxation by the level-shift operator, are intimately connected and that, 
in the low-density limit (binary collision approximation), the latter can be expressed in 
terms of scattering cross sections (Fano 1963, Ben-Reuven 1975). This close connection 
is most obvious when the relaxing subsystem is prepared in a well defined stationary 
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stateofits Hamiltoniaqand thedecay ofthisstate’s population is subsequently monitored 
(a ‘TI’ process) (cf Redfield 1965, Abragam 1961). However, a broad class of relaxation 
processes (those of the ‘T2‘ type) involve an initial preparation in a non-stationary 
superposition state (eg, by coupling to a molecular moment with off-diagonal elements). 
Proper description of such processes requires an introduction of tetradic Green functions 
and level-shift (or line-shift) operators (Fano 1963, Redfield 1965, Ben-Reuven 1975) 
(or two-time particle-hole Green functions in the terminology of quantum field theory 
(Abrikosov et a1 1965, Fetter and Walecka 1971), as opposed to the one-particle Green 
functions adequate for dealing with T ,  processes). The relation of the tetradic line-shift 
operator to  the T matrix is much more complicated. 

I t  was recently realized that T,-type processes can be studied not only by relaxation 
but also by scattering experiments (such as the molecular-maser-beam scattering 
experiment of Kukolich er a1 (1973): see also Wang et al(l973)). In such experiments the 
beam particles are prepared in a non-stationary superposition state and, following their 
scattering, the beam attenuation in this particular state is measured. I t  then becomes 
necessary to extend the introduction of tetradic operators to scattering theory, in order 
to properly define cross sections and attenuation rates for such ‘T,-scattering’ experi- 
ments (Ben-Reuven and Kukolich 1973). 

The tetradic scattering (3) matrix is introduced below, in analogy to the Lipmann- 
Schwinger dyadic T matrix of stationary-state scattering theory (cf Goldberger and 
Watson 1964). It is then shown how both (TI and T2) types of scattering can be analysed 
in terms of tetradic matrix elements of 3 (Fano 1963, Ben-Reuven 1975). In the 
stationary (TI)  case, elements of Y directly relate to scattering (or attenuation) rates (or 
cross sections). In the non-stationary (T2) case, complex rates (the imaginary part 
corresponding to frequency shifts) are obtained, showing that rates coupling different 
superposition modes may involve T-matrix elements lying off the energy shell. 

This formalism is exemplified by the analysis of the molecular-maser-beam scattering. 
Discussion of the connection to relaxation (linear response) theory follows. It is then 
shown how a single experiment can include both types of processes (ie, scattering and 
relaxation) as successive events. Such is the case when a particle (eg, a photon) is scat- 
tered by a small subsystem (eg, a molecule) which, in turn, is weakly coupled to a thermal 
bath (eg, collisions with a gas sample and radiative damping). Finally, extensions of the 
T,-type scattering experiments are suggested in the conclusive notes. 

2. Tetradic scattering matrix 

In an ordinary (stationary-state) scattering experiment the reactants are prepared (or 
products analysed) in terms of eigenstates of the Hamiltonian H o  of the non-interacting 
constituents. When our information regarding the state is incomplete, stationary 
states are characterized by specifying the diagonal elements of a density matrix p in 
the basis of eigenstates of H , .  In the non-stationary case the initial preparation state (or 
final detection state) is specified by a superposition of eigenstates of H o  (or off-diagonal 
elements of p ) .  Such a state can be prepared, for example, by inducing a beam particle 
in a stationary pure state ($J to  go into a superposition state + Ch$& by applying 
a short radiation pulse of specified duration during which transitions occur between the 
eigenstates a and b of H , .  

Formal scattering theory provides us with the means for relating the stationary-state 
wavefunctions t j a  (or diagonal density-matrix elements pa=) at some early time before the 
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scattering takes place, to other states at a later time after the scattering. In the density 
matrix language (in the interaction picture), we can write 

where S is the ordinary S matrix of the formal theory. Equation ( l a )  may be rather 
trivially rewritten in a tetradic matrix fashion 

where (using a more general definition cf Ben-Reuven 1975) 

%*:ah = s c o s J h .  (2) 

For shorthand, equation (2) will be written Y = SS*, with S operating on the rows of 
p and S* on its columns (the asterisk implying complex conjugation). The S matrix 
takes care of energy conservation in equation ( la )  since it vanishes unless a and c have 
equal energies, and of probability conservation by its unitarity. 

The generalization to non-stationary experiments involving off-diagonal density- 
matrix elements is not so trivial. One might be tempted to simply apply equation (2), 
with b # a and c # d ,  to pa,,( - r;) to obtain ped( + x). This is, however, not quite the 
proper thing to do. pab represents a non-stationary state, and energy conservation 
arguments should not apply to the scattering process alone (they should include the 
preparation and detection stages, which involve the use of pulses in a non-adiabatic 
fashion). Neither are probability conservation arguments relevant to this case. pcd 
represents, outside the scattering range, an oscillating quantity : its oscillation frequency 
is measurable over finite time periods, and need not be equal to that of pa,,. I t  is therefore 
necessary to introduce the more general T matrix, with possible admission of off-the- 
energy-shell elements, to the formal description of the long-time behaviour of p .  Since 
the stationary case (a = b) is only a special case, and since, anyhow, transition rates (or 
cross sections) are expressible in terms of the T matrix, we shall proceed here with a 
general introduction of the tetradic scattering (9) matrix, and its relation to T,  as a 
general means of relating p after the scattering to its value before the scattering. 

Formally, the introduction of F follows from the Liouville-von Neumann equation 
for the density matrix (cf Fano 1963) in much the same manner as the derivation of the 
Lippmann-Schwinger T matrix follows from the Schrodinger equation (cf Goldberger 
and Watson 1964). The tetradic analogue of the Hamiltonian H is the Liouvillian X .  
defined as (Fano 1963) 

or, in the shorthand notation, 

-F = h -  ' ( H I *  - I H * ) ,  (3b) 

H = H o + H H , .  (4) 

I being the identity operator. Let 

where H o  is the Hamiltonian of the non-interacting incident (or scattered) particles and 
H is their interaction. (Extension to reactive scattering is rather straightforward and 
will not be referred to here.) Correspondingly, let 

X = .ytC+.*'. (5) 
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The scattering matrix Y can be introduced by the tetradic analogue of the Lippmann- 
Schwinger equation, 

. T ( W )  = 3q + ;rE",Y(W)Sl, (6) 
where B(w) is the tetradic retarded Green function for A", 

$'(U) E :lye $(w + iq) = lim(o - X' +it/)- '. (7) 

The 9 matrix can be expressed in binary forms involving T-matrix elements defined 
on the rows of p and Tt-matrix elements defined on the columns of p. The general 
expression is (Fano 1963, Ben-Reuven 1975) 

h%d:ob(W) = + hw)sdb - T,*,(Eo - hW) 

+ ( h i ) -  dEgcd;cdKd(E + flW)T&(E)gob:ab, (8) 

where 

9ab;ab = [ G O ( E  + hw)l* - IGO*(E)lub;ab 

= ( E +  fio- E,+ ir/)- - ( E -  E,- ir/)- ', (9) 

Go@) = lim (E-H,+ir/)-' 
V'+O 

being the dyadic retarded Green function for H,, and E,,, E,, etc, being eigenvalues of H,. 
Asymptotic behaviour of stationary states is adequately described by on-the-energy- 

shell elements T,,(E), with E = E, = E,, of the scattering matrix. Correspondingly, 
'on-the-frequency-shell' elements of 9 are given by (Ben-Reuven 1975) 

h'%;@b(W) = Ka(Ea)sdb - s c a T & ( E b )  + 2nis(Ec - Ea)Ta(Ea)Td*h((Eb). (U = = wed), 
(1 1) 

where oab = h -  '(E,-Eb),  etc. As is obvious from equation (1 l), on-the-frequency-shell 
elements of ,T contain on-the-energy-shell elements of T and Tt. Given the dyadic 
relation between S and T, 

S,, = S, ,  - 2niS(E, - Ea)Ka(Ea) ,  

%;ab = 6caSdb - 2nis(acd - Wab).%d:ah(Wah), 

(12) 

(13) 

where Y is the tetradic S matrix of equation (2). Also, on-the-frequency-shell elements 
of .T obey the theorem (Fano 1963) 

(14) 

it follows that 

i(.Y(w)- .Y+(w)) = 2 n 9 + ( o ) d ( o  - ,&,)S(w), 

i(T(E)- Tt(E))  = 2nTt(E)S(E-Ho)T(E) (15) 

in analogy to the dyadic 'optical' theorem 

pertaining to on-the-energy-shell elements of T. 

notation : ie, 
I t  is appropriate here to define what is implied by Hermitian conjugation in tetradic 

( < y t ) a b ; C d  = ,TFd;ab .  (16) 
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This should be distinguished from another transposition operation, namely Liouvillian 
conjugation, defined by 

(T )ab;cd = y & ; d c .  (17) 
The latter is directly related to Hermitian conjugation of dyadics, as (FX) t  = F Xt,  X 
being an arbitrary dyadic. Since H is Hermitian, and S is unitary, it follows that 

2 = , q t  = -xx (18) 

and 

Y = (*Y+)-l = 9" 

%+(CO) = Y(o*), 
Hence 3, and likewise T, obey 

YX(o )  = -Y(-w*), 

(19) 

where &U* means replacing o + iq by k (o - it/) in equation (7). 

3. Level attenuation 

We shall now proceed to  discuss the meaning of various matrix elements of ,T in terms 
of scattering rates. We shall classify them, in general, into two classes: elements of the 
type describing T l-type processes (level attenuation, or stationary-state scattering), 
and elements of the type 9&& # b) describing T,-type processes (line attenuation, or 
non-stationary-state scattering). 

Consider the tetradic TI-type elements of ,T defined on the zero-frequency shell, 

where 

and 

Notice that a, c etc, denote complete sets of quantum numbers (translational and 
internal) of all participating particles. The summation over c includes an integration 
over all continuous quantum numbers. The exclusion of c = a from the sum in equation 
(24) implies that the integrals over continuous variables other than energy (eg, scattering 
angles) should be replaced by Cauchy principal parts. 

An off-diagonal element (c # a)  specifies the transition rate (rCJ from state a to 
state c. The diagonal element (c = a) specifies the total attenuation rate of level a. 
Notice that (unlike the optical theorem for the forward scattering amplitude T J E J ,  
which involves the total scattering rate), equation (24) excludes the forward elastic 
scattering (c = a)  from the sum. (This is, however, of no practical implication if the 
scattering amplitude is not singular in the forward direction.) The rates rCa are pro- 
portional to the flux of incident particles. To introduce flux-independent (and hence 
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geometry-independent) quantities we can define appropriate cross sections. For 
example, in the case of one-particle scattering by a heavy target (or two-particle scattering 
in centre-of-mass coordinates), the cross section for the a -, c transition is 

aca(Eo) = i.Kc;aa(o)E- 7 (25) 

where Fa is the flux of incident particles in level a. 
In many experiments of this kind it is, however, impossible (or undesirable) to 

specify the complete set of quantum numbers of all constituents. Suppose only a 
subsystem (the ‘projectile’) has fully specified states, whereas the rest (the ‘target’) can 
only be specified, at best, by a stationary distribution function. Let a, b, etc, denote, in 
this case, the projectile states (including translational degrees of freedom) and a, b, etc, 
denote target state. Also, let p l ,  etc, be the alleged distribution in target states. A 
reduced tetradic scattering matrix, defined explicitly on projectile states only, is intro- 
duced by 

( z d ; o b ( O ) )  = 1 ‘ % 6 d / J ; a i b i ( W ) P i .  (26) 
16 

I t  follows from this definition that the reduced level-attenuation rates for the projectile 
can be derived from 

Here (for c # a)  

= 2 ~ t h  - 1 I T ~ , ~ A E ~  + E,)I~P,w, + E ,  - E, - q (28) 
16 

is the transition rate from a to c, irrespective of changes in the target. 

U-,) = 1 V c a )  (29) 
c # a  

is the total attenuation rate ofthe pro-iectile beam in state a, irrespective oftarget changes. 
It excludes not only the complete-set forward elastic scattering amplitude (aa = cp) 
but also transitions to degenerate target states (aa + a/?, CT # /?) not affecting the pro- 
jectile state. 

The array of elements defined by equation (27), with rows labelled by c and columns 
by a, is equivalent to the matrix of coefficients in the Pauli master equation (cf eg Van 
Hove 1955, Prigogine 1962, Zwanzig 1964) for the subsystem (the projectile). Conserva- 
tion of probability is compatible with 

i c ( Z c ; a a ( O ) >  = 0, 
C 

where the sum over c is unrestricted. 

4. Line attenuation 

Consider now the T,-type matrix elements &;ab,  with a # b, pertaining to scattering 
from a non-stationary state (pab) .  This state represents a resonance mode (or ‘spectral 
line’) excitation of the system and therefore the corresponding diagonal tetradic element 
will be referred to as relating to line attenuation. 
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The diagonal on-the-frequency-shell elements & ; , b ( w o b )  are not pure imaginary, 
their real part producing a frequency shift of the m o b  mode. Applying the optical theorem, 
equation (15), to equation (1 l ) ,  we obtain 

- Im % b ; a b ( o . b )  = +(r, + r b )  + Tindab), 

ri, ,(ab) = nh - ‘ 1  K, (E , )  - & b ( E b ) 1 2 6 ( E , -  E h  - h W , b )  

(31) 

where r, is the total attenuation rate of level a,  given by equation (23), etc, and 

(32) 

is an interference term, involving the difference in forward scattering amplitudes in the 
two levels (a, b)  of the resonance mode. The line-attenuation rate thus consists of a 
(TI-type) mean attenuation rate of the two levels, plus the interference term. 

Here, again, we can extend the discussion to the case where only the ‘projectile’ 
is in a well specified state by referring to equation (26). Thus, 

- I m ( % b ; a b ( O o b ) )  = %(ro) + (rb))+ (33) 
where 

( r in , (ab) )  = nh-’  1 l T P , ~ a ( ~ a + ~ z ) -  T , , , b , ( E b + E u ) 1 2 p u G ( E , - E , )  (34) 
I P  

involves interference of scattering amplitudes diagonal in projectile states. 
The non-stationary mode (ab) may be coupled to another mode (cd). For example, 

we can prepare the projectile by excitation with a pulse in resonance with the a -+ b 
transition and monitor the scattered beam by a pulse in resonance with the c -+ d 
transition. The (complex) rate for such coupling is given by &;,b (or by (%d; ,b)  in the 
reduced case). However, the two mode frequencies, m o b  and m c d ,  need not necessarily be 
equal, and therefore the rates can not be related to elements of 3 (or T )  strictly confined 
to the frequency (energy) shell. The relation of p (  + m) to p( - E) is no more describable 
by a Markoffian-type rate equation, but by an integro-differential equation of the 
generalized Langevin type (cf Zwanzig 1960a, b, Mori 1965a, b), with a memory kernel. 
A differential rate equation form can be nevertheless retained under certain approximate 
conditions. Suppose all ‘upper’ states (a,  c, etc) and all ‘lower’ states (b ,  d, etc) of the 
various resonance modes concerned lie each within a narrow band of energies AE over 
which T,,(E + ho) and T b b ( E ) ,  etc, do not vary appreciably with E .  Ordinarily, if there is 
no long-lived resonance (or quasi-bound) state of the colliding particles, there exists 
such an interval ; it may serve to define a ‘collision’ time 

T ,  z hJAE (35) 
(typically of the order of a picosecond for molecular collisions at thermal energies), which 
is a slowly varying function of E. We may then replace the variable argument of q b ; c d ( ( o )  

by some fixed value W lying within the band of resonance frequencies etc. By 
‘coarse graining’ over time intervals large compared to T, , a differential rate equation 
similar in form to the Bloch-Redfield equation may be written, 

(Sli?t)(p) = -i(!2+ ( . Y ( W ) ) ) ( p ) ,  (36) 
where ( p )  is the subsystem (projectile) reduced density matrix, defined on the band of 
modes ab, etc, confined by AE. Here 

%d;ab = o,bBca6db (37) 
is the (diagonal) tetradic of resonance frequencies. The similarity to the Bloch-Redfield 
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rate equation is in form only: the rate coefficients may be different, as we shall see later 
on, dealing with relaxation experiments. 

Equation (36) does not strictly confine the F matrix to on-the-energy-shell elements 
of Tand T’ (though it  may be approximately expressed by such). We should thus admit 
that energy conservation arguments, strictly enforcible in (TI-type) scattering of 
stationary states, do not apply here. As already stated above, energy conservation 
arguments should rather apply to the whole sequence of prcparation-scattering- 
detection events, in which the non-adiabatic application of pulses is involved. The mode 
cd, represented by ped, oscillates through the time-dependent factor exp( - iw,,t). The 
oscillation frequency is measurable (ie, it requires monitoring pCd over a finite period of 
time and not just its asymptotic value), and therefore need not be equal to that of the 
initial mode (ab). 

5. The maser beam 

Maser-beam scattering (Kukolich et a1 1973) provides an example of a scattering 
experiment in which the projectile can be prepared in either a stationary or a non- 
stationary superposition state. Ammonia molecules, for example, can be selected in one 
of the two parity states of the inversion doublets, and then brought to a superposition 
state by application of a n/2 pulse of microwave radiation. The monitoring of the 
attenuated beam, after passing through a scattering chamber, is then made possible by 
applying a similar pulse, phase-matched to the previous one. 

The ideal two-level maser consists of only two internal states (a and b), which may 
be coupled by a radiative transition. The tetradic 9 matrix has thus four available 
‘channels’ aa, bb, ab, and ba. In the terminology of Liouville-space (or double-space) 
vectors (Fano 1963) on which tetradic operators are defined, the four channels span, 
respectively, four orthogonal subspaces, in each of which vectors are labelled by transla- 
tional and target degrees of freedom (or by translational alone, in the target-reduced 
(9) formalism). 

Consider the relevant forward scattering amplitudes in the various channels. Let 
p ,  q, etc, denote translational states (with p reserved for the incoming beam). In the aa 
channel, 

Here (dropping further explicit reference to the target-reducing angular brackets), 

reI(a) = C C I T a S q . a a p ( E o a p ) 1 2 P z ~ ( E o S q  - Eozp) 
aS q * P  

(39) 

is the total elastic scattering rate of maser molecules in state a (in non-forward directions), 
and 

is the rate of inelastic (a -+ b)  transitions. Equation (40) also provides the coupling of the 
aa to the bb channels. 

The attenuation of the ab mode is related to the T,-type element of Y, 

i(%pbp;opbp(006)) = gr, + rb)  -k Tint(ab) (41) 
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(the tilde denoting a complex 'rate'). A similar result is obtained for the ba mode, with 
the complex interference term Ti,,(ba) = Ti*,,(ab). The ab channel is coupled to the ba 
channel by the complex rate - 

- i(&pop;upbp(0)) Tex(ba;  ab) = T,*,(ab: ba), (42) 
with Re(T,,) representing a mixing (or exchange) rate of the resonant (ab) and anti- 
resonant (ba) modes (Ben-Reuven 1966,1969). Here we have taken 6 = 0 for the 'band' 
of close-lying modes ab and ba (assuming 21Ea - &,I is within the interval AE 2 '). 

General expressions for Tint and T,, follow directly from the definition of F and 
will not be given here explicitly. However, they can be much simplified under certain 
approximate conditions (Ben-Reuven and Kukolich 1973). In many instances (such as, 
eg, the ammonia maser at thermal energies), the scattering amplitudes are practically 
insensitive to the interchange of a with b, implying equal behaviour of the two levels in 
the scattering process. We may then write (assuming the interaction matrix V,, is real) 

x a  Thb, Tho, (43) 

rint 2 0, (4.4) 

rex 2 rho = rob, (45) 

etc, for the T matrix in the two maser levels. Under such circumstances, - 
and - 
equal to the inelastic scattering rate (equation (40)). 

Cross coupling between TI-type (aa) and T,-type (ab) channels is in many cases 
excluded by symmetry arguments (eg, inversion symmetry in ammonia). We therefore 
have, under the approximations made above, altogether two distinct rates : the elastic 
attenuation rate Tel and the inelastic scattering rate T b a .  The tetradic (9) operator, 
considered as a 4 x 4 supermatrix in the four channel labels, can be diagonalized (under 
the preceding simplifications) by introducing the Feynman-Vernon-Hellwarth (Feynman 
et al 1957) representation. 

Let the double-bracket symbol lab)) (cf Baranger 1958, Ben-Reuven 1975) represent 
the double-space (Liouville-space) vectors corresponding to the ab mode on which 7 
is defined, etc. The four channels under which 3 reduces to the diagonal form are 

lo> = 2 -  "2(laa>> + Ibb)), 

13)) = 2- "2(laa)) - Ibb))). 

In these four channels (dropping explicit reference to the translational state label p )  

Channel 0 represents the total population of the beam, irrespective of the internal (a or b)  
states, and is affected only by the total attenuation rate (in non-forward directions) 
of the beam, irrespective of internal-state changes. The other three modes constitute the 
Feynman-Vernon-Hellwarth analogue of the Bloch 'vector' for optical (or microwave) 
transitions. The three 'components' of this 'vector' are unequally attenuated. Notice, 
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however, that, this unequal behaviour does not follow the traditional division into TI 
and T, rates in Bloch’s equation, but it rather follows from the uneven effect of the 
inelastic scattering rate. 

The representation introduced by equation (46) can be transformed to a ‘rotating 
frame’ (cf Abragam 1961), rotating the 1 and 2 components with an angular velocity 
o 2: wOb. Neglecting rapidly oscillating terms (‘rotating frame’ approximation), Tl; 
and Y,;, are mixed so that, in the new (rotating) frame, 

i(F&)l) = i(T9?,) = r,,+rbll. (48) 

Notice, however, that (contrary to the prevailing usage with regard to Bloch’s equation) 
this rate is smaller than i(Y3;3) by an amount equal to the inelastic scattering rate (rha). 

6. Relaxation experiments 

We have seen how the tetradic matrix provides a formal framework for the general 
discussion of scattering experiments, both of the T, type, with the beam prepared in a 
stationary state, and of the T, type, with the beam prepared in a non-stationary super- 
position state. 

Consider a subsystem of type A (eg, a molecule) in continuous contact with a large 
system in thermal equilibrium, consisting of other subsystems, of type B. Let us assume 
that the coupling of A to the thermal bath B is sufficiently weak, and long-time statistical 
correlations can be neglected (Fano 1963). Suppose now that A is prepared by a sudden 
excitation (eg, by a radiation pulse) in some non-equilibrium state, eg, a well defined 
stationary state of its Hamiltonian HA, or a non-stationary (superposition) state. The 
time evolution of A is then monitored by an appropriate means (eg absorption or 
fluorescence for stationary states, or pulse techniques for non-stationary states). 

Let 

H = HA+HB+H1 (49) 

be the Hamiltonian of A and the bath B interacting through H ,  . The corresponding 
Liouvillian 

X = X A + X B + X l .  (50) 

Neglecting initial correlations between A and B at the moment of excitation of A, we 
may write 

d o )  pA(0)pB 9 (51) 

where pA(0) is specified by the mode of excitation, while pB is a canonical distribution, 
representing a thermal equilibrium. Since we monitor A alone, we are interested only 
in the reduced density matrix for A, obtained by taking the trace over all B degrees of 
freedom, 

= TrBp(t) = TrB[exp( - i & r ) p A p B l .  (52)  

Applying to p(t)  the projection operators, defined by Zwanzig (1960a, b) (see also Fano 
1963) 

Px = p~Tra (X) ,  Q = 1-s, (53) 
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it follows that 

Here, following Zwanzig's (1960a, b) method 

is the reduced tetradic retarded Green function for A. I t  is expressed in terms of the 
proper tetradic self-energy (or line-shift) operator 

(g(0))  = T ~ B ( W ( ~ ) P B ~  (56) 

Notice that the brackets here, implying a trace over the bath, have a role similar to that 
of the brackets over F in previous sections with respect to the reduction of target 
degrees of freedom. W is, however, different from Y owing to the intermediary dis- 
position of the operators Q in equation (57), unlike equation (6). 

A rate equation, similar to equation (36), can be obtained, with (9) replacing (F), 
by making similar approximations. Suppose one may define a correlation time z, for 
the interaction with the bath, as a collision time was defined for the scattering by the 
target. It is then possible to neglect the variation of (W(o))  with w over a range 

A a  << r ;  ', ( 5 8 )  

for the element p o b .  etc, of pA,  with values of wob lying within the range Am around W. 
The ensuing Bloch-Redfield rate equation for relaxation differs from the one for scatter- 
ing, equation (36), insofar as (9) differs from (Y). Here, the Hermitian part of (.%) 
produces frequency shifts, and its anti-Hermitian part plays the role of a relaxation 
matrix, in the manner that the anti-Hermitian part of (Y) describes the various 
scattering rates. 

The two operators F and W are related by the integral equation (Fano 1963) 

,y = W f skPgA(w)PW, (60) 
where 

%,(U) = (W - + iq)- ' 
is the retarded Green function for the free subsystem A. 9 is related to W as the self- 
energy to the proper self-energy in quantum field theory. Whenever the bath is a dilute 
gas, the projection operator P introduces (through the summation over B states) the 
number density of bath molecules nB as a factor (cf Ben-Reuven 1975). The expansion 
of F in equation (60) in powers of 9 therefore amounts to an expansion in powers of 
the density (Albers and Oppenheim 1972). To lowest order in nB (the binary collision 
approximation), (9) and (F )  are interchangeable, and one may then indiscriminately 
talk about scattering and relaxation rates. 
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7. Photon absorption 

Consider the absorption of a monochromatic beam of photons by a molecule weakly 
coupled to a thermal bath. This will provide an example of a case in which scattering 
and relaxation occur as successive events. 

The Hamiltonian for this problem is 

H = H A + H B + H l + H R + V =  H M + H R + V ,  (62) 

where HM is the Hamiltonian for the molecule-plus-bath system, as defined by equation 
(49), HR is the Hamiltonian of the radiation field and V is the molecule-radiation 
interaction. The bath, it is assumed, does not interact with the field. 

The radiation field has many modes with which the molecule can interact and 
photons can be emitted and re-absorbed by the molecule, creating the so called vacuum 
fluctuations (or radiation noise; cf Heitler 1954). As a result, the mean number of 
photons in each mode will fluctuate. However, given sufficiently high temperatures and 
strong beam intensities these fluctuations will be very small in comparison to the number 
of photons in the incident beam. These fluctuations produce radiative damping of the 
molecular levels, and we should present them as part of the relaxation process, rather 
than the scattering (Cohen-Tannoudji 1968, Haroche 1971). It is therefore necessary 
to redistribute the various terms in the Hamiltonian, sorting out those parts of HR 
and V representing the particular beam mode and its interaction with the molecular 
system. 

Let the beam mode be denoted by k .  Writing 

and similarly 

we can add equations (63) and (64) to HB and H ,  , respectively, as a part of the thermal 
bath. Let the initial states of the molecular Hamiltonian HA be labelled a, b, etc. The 
initial beam state (in the occupation-number representation) is n k .  Normalizing the 
field modes in a box of dimension L, we may write 

hlU,nk)  = CL-3’2[ubo(k)n:’21b,nk-  1)+Vba(-k)(nk+1)1’21b,  nk+ I)], (65) 
b 

where k is the wavevector of the beam, and u(k) is an operator defined on the degrees 
of freedom of A. In the electric dipole approximation, 

~ ( k )  = ( f h c J k J ) p A  c exp(ik . r A ) ,  (66) 

where e, p, and rA are, respectively, the polarization of the beam, the dipole moment 
and position of molecule A. The two parts of equation (65) represent, respectively, 
absorption and emission of a photon. The unity in (nk+  1)”’ represents spontaneous 
emission. It will add up a small contribution to the radiation noise, negligible in com- 
parison to the induced effect as nk >> 1. We shall therefore approximate (nk+  1)1’2 by 
n:12 in equation (65). 

Given a beam flux 

Fk = CL- 3nk, (67) 
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the total attenuation cross section of the beam (irrespective of changes in the molecular 
states, which are characterized by the initial distribution p )  is 

Considering V, to lowest order only (the first Born approximation), we may write 

F(0)  2: %;;Y(O).l.;;, (69) 

where $’; is the tetradic Liouvillian corresponding to vk, and 

y (w)  = (w-Hf-X,+iq) - l .  (70) 

Here 2’ is the Liouvillian corresponding to 

H’ = H - H k - 6 ,  (71) 

the Hamiltonian of the molecule A interacting with the generalized bath (including the 
radiation noise as well as the molecular bath) in the absence of the beam. 

Since 

(%Ink f 1 .nk:nk i 1 , n k  = k O k  9 (72) 

where hw, is the beam-photon energy, we can replace y ( 0 )  by %(wk), with % depending 
on 2” only, for the induced emission part of V,, and by B(-o:) = - g x ( w W k )  for the 
induced absorption part, thus removing further explicit reference to the beam degrees 
of freedom. Keeping all this in mind, considering the definition of Liouvillian conjuga- 
tion, equation (16), and noting that the elements in equation (68) are pure imaginary, 
we end up with 

Ok = l 2  Im c Vd*E(k)uba(k)(Pa-pb)(%%e;brr(wk)). (73) 
abcd 

So, the scattering cross section for attenuation (absorption) of the beam is expressible 
in terms of a reduced tetradic retarded Green function of the molecule which, in turn, 
is coupled to the thermal (molecular and radiative) bath through the (9) tetradic of 
relaxation theory (equation (56)). 

In the foregoing discussion we have dealt with molecule A and the bath as statistically 
uncorrelated, ie, 

P = P A  P B  (74) 

(with pB representing an equilibrium distribution). Equation (73) is readily modified to 
include such correlations by not discriminating between the two, writing 

(75) #k = -(Ch2)-’2 Im Tr(Ut(k)s(ok)[v(k), PI), 

where p is a combined molecule-plus-bath equilibrium distribution. The Zwanzig 
projection operators should be redefined to include the effect of the statistical correlations 
(cf Ben-Reuven 1975) or the trace in equation (75) be calculated by other means. For 
example, whenever p is a grand canonical distribution, the method of finite-temperature 
(imaginary-time) Green functions of quantum field theory can be applied (Abrikosov et aI 
1965, Fetter and Walecka 1971, Ross 1966, Bezzerides 1969a, b). 
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8. Conclusions 

We have presented above a tetradic scattering matrix formalism as a combined frame- 
work for discussing both scattering and relaxation experiments where the initial and the 
final states are either stationary (pa@) or non-stationary (pob). 

The following conclusions were reached. 
(i) Scattering from stationary states (TI-type) is completely specified by on-the- 

energy-shell elements of the Tmatrix, whereas scattering from non-stationary states may 
require also off-the-energy-shell elements. In the former (stationary) kind of scattering, 
the tetradic Y-matrix formalism is a rather trivial variant of the ordinary T-matrix 
formalism. This is not so in the latter (non-stationary) case, where the ordinary (dyadic) 
scattering formalism is inadequate. We should notice, however, that even in the 
stationary-state case the tetradic formalism brings forward some features latent in the 
ordinary formalism (such as the relation of the &;a elements to the rate coefficients 
of the Pauli master equation). 

(ii) Relaxation rates can be expressed in terms of a tetradic level-shift operator 9 
which, in the low-density limit, is indistinguishable from 5 Conclusions concerning Y 
are equally attributable to W in this limit. Elements Zdiab connecting the two non- 
stationary modes ab and cd are, for example, intimately related to cross relaxation 
between spectral lines associated with the two modes (cf Baranger 1958). 

(iii) Experiments can be performed in which scattering and relaxation occur as 
successive steps in a hierarchy of elementary processes (eg, the absorption of radiation 
by a molecule coupled to a thermal bath). 

(iv) A reduced Y-matrix formalism is introduced to handle situations where the 
state of the scattered particles is not specified completely (eg, when the state of the 
‘projectile’ is well specified, whereas that of the ‘target’ is only describable by some 
statistical distribution). This reduction procedure is formally similar to the ‘bath 
averaging’ in relaxation theory. 

A full scope of the problems to which the tetradic formalism applies thus emerges. 
It includes ordinary (stationary-state) scattering, with target state fully or partially 
specified, as well as non-stationary state (maser-beam) scattering. In addition, it covers 
relaxation processes of the T, type (level decay) and the T, type (line attenuation). 

The formalism described above should suggest new kinds of experiments. For 
example, maser-beam experiments performed so far involved only attenuation (forward 
scattering) measurements. It should be possible, in principle, to perform experiments in 
which the scattered beam is monitored in a non-forward direction, or in a non-stationary 
resonance mode different from the one in which it was originally prepared. 
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